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Six direct numerical simulations of turbulent time-evolving strained plane wakes have 
been examined to investigate the response of a wake to successive irrotational plane 
strains of opposite sign. The orientation of the applied strain field has been selected so 
that the flow is the time-developing analogue of a spatially developing wake evolving 
in the presence of either a favourable or an adverse streamwise pressure gradient. The 
magnitude of the applied strain rate u is constant in time t until the total strain eat 
reaches about four. At this point, a new simulation is begun with the sign of the applied 
strain being reversed (the original simulation is continued as well). When the total strain 
is reduced back to its original value of one, yet another simulation is begun with the sign 
of the strain being reversed again back to its original sign. This process is done for both 
initially “favourable” and initially “adverse” strains, providing simulations for each of 
these strain types from three different initial conditions. The evolution of the wake mean 
velocity deficit and width is found to be very similar for all the “adversely” strained cases, 
with both measures rapidly achieving exponential growth at the rate associated with the 
cross-stream expansive strain eat. In the “favourably” strained cases, the wake widths 
approach a constant and the velocity deficits ultimately decay rapidly as e-2at. Although 
all three of these cases do exhibit the same asymptotic exponential behaviour, the time 
required to achieve this is longer for the cases that have been previously adversely strained‘ 
(by ut M 1). These simulations confirm the generality of the conclusions drawn in Rogers 
(2002) regarding the response of plane wakes to strain. The evolution of strained wakes 
is not consistent with the predictions of classical self-similar analysis; a more general 
‘equilibrium similarity solution’ is required to describe the results. At least for the cases 
considered here, the wake Reynolds number and the ratio of the turbulent kinetic energy 
to the square of the wake mean velocity deficit are determined nearly entirely by the total 
strain. For these measures the order in which the strains are applied does not matter and 
the changes brought about by the strain are nearly reversible. The wake mean velocity 
deficit and width, on the other hand, differ by about a factor of three when the total strain 
returns to one, depending on whether the wake was first “favourably” or “adversely” 
strained. The strain history is important for predicting the evolution of these quantities. 

1. Introduction 
Turbulence models are typically calibrated against turbulent flows in equilibrium or 

self-similar states. Not surprisingly, they thus often have difficulties in predicting the re- 
sponse of turbulence to “extra” strains such as streamline curvature, streamwise pressure 
gradients, or cross-flow shear. The presence of competing turbulence production mech- 
anisms results in greater complexity’and predicting the evolution of the turbulence in 
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such situations usually requires that additional terms be added to the turbulence model. 
These terms are often chosen in a somewhat ad hoc manner, as the impact of such extra 
strains is often poorly understood, providing little guidance to the modeller. 

Many experiments have been performed to assess the impact of such extra strains on 
various canonical turbulent flows. Following Townsend’s (1954) study of strained homoge- 
neous turbulence, Reynolds (1962) and Keffer (1965, 1967) used the same distorting wind 
tunnel to study the impact of global straining on the wakes of various circular cylinders. 
Other more applied studies for aircraft design have examined the effect of streamwise 
pressure gradients on wake flows (e.g. Hill, Schaub & Senoo 1963 and Hoffenberg, Sulli- 
van, & Schneider 1995). Strained mixing layers have also been studied (Keffer, Kawall, 
Hunt & Maxey 1978), as have wakes and mixing layers subjected to cross-plane shear 
(Nayeri, Beharelle, Delville, Bonnet & Fiedler 1996, Beharelle, Nayeri, Delville, Bonnet 
& Fiedler 1996, and Atsavapranee & Gharib 1997). In all these experiments the effects 
of the strain were significant and likely to be challenging for existing turbulence models 
to predict. 

To study the response of free shear flow turbulence to such “extra” strains, Rogers 
(2002) computed several direct numerical simulations of turbulent plane wakes subjected 
to global irrotational strains. In these simulations both the orientation of the applied 
strain and the strain rate were varied. Although the strained wake flows did not evolve 
according to  classical similarity theory, their evolution was found to be consistent with 
more general ‘equilibrium similarity solutions’. The shape of the mean velocity deficit 
profile was found to be insensitive to the both the orientation and rate of the applied 
strain. Because of this, the wake Reynolds number was completely determined by the 
total strain, independent of the strain rate. 

In all the strained wake simulations in Rogers (2002), the applied strain rate was 
constant in time. This constant strain rate is convenient for simplifying the model problem 
studied because it removes effects associated with a change in strain rate, but it does not 
correspond to the strain-rate history of practical problems. For instance, in the case of a 
high-lift multicomponent airfoil the wake of an upstream slat is strained by the pressure 
field around the main airfoil. The slat wake experiences a short, very strong favorable 
pressure gradient (expansive streamwise strain) followed by a longer adverse gradient 
(compressive streamwise strain). Even models that have been developed to account for 
the effects of extra strains overpredict the slat wake width and velocity deficit (Rumsey 
& Gatski 2000). 

All the simulations in Rogers (2002) were begun from the same initial unstrained 
wake flow field. The generality of the conclusions drawn in that work has thus not been 
demonstrated. Although variations in strain rate relative to the time scale of the initial 
turbulence were considered, the structure of the initial turbulent field was always the 
same. 

It is thus desirable to address the generality of the results of Rogers (2002) by gener- 
ating additional simulations, both to study cases with non-constant strain rates and to 
assess the sensitivity of those results to initial conditions with different turbulent struc- 
ture. Here results from four additional simulations are studied to address these issues. 
Rather than selecting an arbitrary strain-rate time history, here the sign of the constant 
strain rate is simply switched after a certain total strain is reached. A similar flipping of 
the sign of the strain was employed in an experiment on strained homogeneous turbulence 
by Gence & Mathieu (1979), in which the applied strain was generated by passing the 
flow through a wind tunnel of varying elliptical cross-section. This reversal of the sign 
of the strain decreases the total strain experienced by the turbulence and this, in turn, 
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helps in assessing the relative importance of the strain-rate history on the turbulence as 
opposed to simply the total strain experienced by the flow. 

Gence & Mathieu (1979) noted that misalignments between the principal axes of the 
Reynolds stress tensor and the directions of straining last on the order of the inverse 
strain rate time scale. During the time required for the anisotropy to readjust, flipping 
the sign of the applied strain causes energy to be transferred from the turbulence back 
to the mean flow and also drives the Reynolds stresses back towards isotropy. Gence & 
Mathieu were able to model the anisotropy evolution quite well using predictions from 
linear Rapid Distortion Theory (RDT). In RDT the evolution of the Reynolds stresses is 
governed by the total strain, independent of the strain-rate history. The strained wakes 
studied here are more complex, with turbulence production by mean wake shear as well 
as by applied strain. It is thus of interest to determine how the Reynolds stresses respond 
to flipping the sign of the strain in the sheared inhomogeneous wake turbulence examined 
here. 

In this paper only strains in the plane of the wake mean profile, with no component in 
the homogeneous spanwise direction, are considered. Such strains are analogous to those 
experienced by wakes evolving in adverse or favourable streamwise pressure gradients. In 
Rogers (2002) three “adverse pressure gradient” cases were simulated at various strain 
rates. To first order, the turbulent statistics were well predicted by the total strain. The 
mean wake velocity deficit and width exhibited some sensitivity to  strain rate, with larger 
total strains required to achieve the asymptotic similarity growth rate when the strain 
was applied slowly. Ultimately, though, even weak strains led to exponential variation 
of the mean wake velocity width and deficit, with the turbulence being unable to evolve 
rapidly enough to scale with the mean flow. Turbulence measures involving the turbulent 
kinetic energy, the turbulent kinetic energy dissipation rate, and the turbulent enstrophy 
exhibited little sensitivity to strain rate, collapsing well as a function of total strain when 
non-dimensionalized by the instantaneous wake mean velocity deficit and width. This 
weak dependence on strain rate history suggests that Rapid Distortion Theory (RDT) 
may be useful for predicting the evolution of strained wakes even for modest strain rates. 
Indeed Townsend (1980) found that RDT did a good job of predicting the Reynolds 
stress anisotropy development in the strained wake experiment of Elliott & Townsend 
(1981). 

By applying the “reversed” strain for the same amount of time as the original strain, 
the total strain experienced by the turbulence returns to one. At this point the size of 
the computational domain, which deforms with the mean flow, is the same as that of the 
original unstrained wake initial flow field but the turbulence, because of irreversible effects 
associated with the strain history and turbulent diffusion, is different. Thus reversing the 
sign of the applied strain again at this point will allow a comparison between two flows 
with the same applied strain rate but different initial conditions. Since two different series 
of reversing strains are examined in this paper, there are actually three different initial 
conditions that can be compared. 

tions. First, to what extent does the order in which various strains are applied matter? 
Is the final state dependent primarily only on the total strain? Second, to  what extent 
are the effects of such extra strains reversible? If the total strain is returned to one, does 
the resulting flow resemble that of an unstrained wake that has evolved for the same 
amount of time? And finally, how universal is the response of different turbulent wakes 
to the same strain? Are the same asymptotic growth rates of wake width and deficit 
observed if the initial wake turbulence is different? Does the time required to achieve 
these asymptotic states vary? 

The additional simulations examined here are thus designed to  address several ques- . 
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A brief summary of the governing equations for the time-evolving strained wake, along 
with possible similarity solutions for this flow, is presented in section 2. These similarity 
solutions are derived in greater detail and generality in Rogers (2002). Section 3 contains 
a brief description of the numerical method used to generate the numerical simulations 
and a description of the cases studied in this paper. Statistical measures of the turbulence 
and flow visualizations are examined in section 4. Conclusions are given in section 5. 

2. The strained time-evolving wake 
2.1. The governing equations 

The development of the governing equations for temporally evolving incompressible 
strained plane wakes is outlined in Rogers (2002). The main results are summarized 
here for convenience, and to define the notation used in this paper. 

The mean velocity field varies in space xi and time t as 

(2.la) 
(2.lb) 
(2.lc) 

where E denotes the ith component of the mean velocity vector, E is the mean stream- 
wise velocity deficit associated with the wake component of the flow, and ai j ( t )  indicates 
the spatially uniform applied mean irrotational strain a q / a x j .  The mean continuity 
equation implies that 

aEq av, a& - + - + - = Ull(t) + a22(t) + a33(t) = 0 , ax, ax2 ax3 

thus only two of the irrotational strain components can be selected arbitrarily. The flows 
examined in this paper have a33(t) = 0 or, equivalently, all(t) = -a22(t). Additionally, 
the strain rates considered here are piecewise constant in time. 

For the strained wakes considered here, the mean Navier-Stokes equations reduce to 

with the mean pressure field being ‘described by 

(except at the times when the strain is suddenly changed), where v is the constant 
kinematic viscosity, p is the constant density, and a33(t) is zero as noted above. The 
wakes studied here are statistically homogeneous in the streamwise XI and spanwise 23 

directions, i.e. there are no spatial gradients of turbulent statistics in these coordinate 
directions. The averages indicated by the overbars are thus taken over (x1,23)  planes, 
with primed lower case variables indicating the instantaneous fluctuation about these 
means. Integrating equation (2.3) from 2 2  = --oo to 2 2  = 00 yields 

t’=t 

A,(t) = Atexp 1 2m(t’)dt’ , 
t‘=O 

where 
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- is proportional to the mass flux deficit of the wake. 

in Rogers (2002). In this paper only the production terms 
The governing equation describing the evolution of the Reynolds stresses u:u; is given 

- 
P22  = -2a22(t)uh2 = Pi2 

P33 = 0 

(2.7a) 

(2.7b) 
(2 .7~)  

(2.7d) 

where the superscripts s and w refer to the strain production and wake shear production 
terms, respectively, and the dissipation terms 

are examined. Twice the turbulent kinetic energy (per unit mass) is defined here as 
q2 = uiu: = ui2 + uh2 + ui2 and the dissipation rate of turbulent kinetic energy is 
denoted by E = -~,,/2. 

- - -  - 

The evolution of’a passive scalar quantity with a Prandtl number of Pr = 0.7 is 
calculated along with the development of the hydrodynamic field. For the purposes of 
this paper, the scalar is used only to assess the level of mixing between the two free 
streams in flow visualizations (the scalar being zero below the wake and one above it). 

2.2. Self-similarity 
The derivation of both “classical” self-similar solutions and other more general “equi- 
librium similarity solutions’’ for temporally evolving strained plane wakes is given in 
Rogers (2002). The classical similarity solution is derived by assuming that all terms in 
the various evolution equations are proportional to each other, with the possible excep- 
tion of the viscous terms, which are often assumed to be negligible. The more general 
equilibrium similarity solutions are derived by relaxing this assumption and only requir- 
ing that certain groups of terms in these equations balance each other. For the classical 
self-similar solution the wake shear remains proportional to the applied strain rate and 
the Reynolds stresses all change at the same rate, that rate being proportional to the 
square of the wake velocity deficit. This is not the case for the equilibrium similarity 
solutions, in which the wake component of the flow may grow or decay relative to the 
applied strain rate and the different RRynolds stress tensor components evolve differently. 
These latter solutions have greater generality than the classical solutions and are found 
to better describe the strained wake evolution observed in both experiments and numer- 
ical simulations (Rogers 2002). A brief summary of these similarity states for constant 
strain rate and all = -a22 is given in this section. More details for these and other cases, 
including some with non-constant strain rate azj, can be found in Rogers (2002). 

Here the characteristic velocity scale Um(t)  is taken to be the maximum value of mean 
wake velocity deficit and the characteristic length scale b(t) is taken to be the wake half- 
width (here defined as the distance between the xz-locations at which the mean velocity 
deficit is half of Urn; some investigators take the half-width to be half this distance). 
For the applied strain considered here with all = -a22, substitution into the classical 
inviscid self-similar solution for constant strain rate yields 

Um(t) 0: eQzzt (2.9a) 
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(2.9b) 
(2.9~) 
(2.9d) 
(2.9e) 

where r] is the scaled cross-stream coordinate and f(7) and k, (y) are the dimensionless 
functions characterizing the shapes of the mean velocity deficit and Reynolds stress 
profiles, respectively. Note that the wake Reynolds number Re, = Umb/v grows like 
e2a22t, as anticipated from equation (2.5). 

However, substitution of this solution into equation (2.3) results in the first three terms 
on the left-hand-side summing to zero. The viscous term is the only term remaining to  
balance the Reynolds shear stress gradient, but one of these terms is growing while the 
other is decaying. The classical similarity solution thus does not apply to the strain 
geometry considered here. 

A different equilibrium similarity solution is possible when U, and b scale according 
to equations (2.98) and (2.9b). For this solution the peak magnitude of the Reynolds 
shear stress is constant in time and the time evolution of the normal Reynolds stresses 
in the scaled 7 coordinate is given by 

u;2  cc e2a22t  (1 + D~(I - e-2a22t)) 

ui2 o( e-2a22t(l + D ~ ( I  - eaaaZt)) 

- 
(2. loa) 

(2.10b) 
- 

- 
U i 2  0: (1 + D3a22t) , (2.10c) 

where D1, D2, and D3 are dimensionless parameters that may be limited in value to  
assure realizable Reynolds stresses. The above similarity constraints on the behaviour of 
uh2 and uL2 can be eliminated entirely if only the combination (rather than the terms 
individually) of the pressure strain, dissipation, and turbulent transport terms in the 
Reynolds stress equation is required to scale like the other terms. However, even then 
this similarity solution has problems when a22  < 0 because the viscous diffusion terms 
ultimately grow exponentially relative to the other terms in the equation and cannot be 
balanced. 

Another class of equilibrium similarity solutions can be found by grouping various 
terms in the evolution equations for the mean momentum and the Reynolds stresses and 
only requiring that these groups be proportional, rather than requiring each individual 
term to be proportional. In particular, if the pressure strain, dissipation, and turbulent 
transport terms in the Fkynolds stress equation combine to scale like the wake shear 
production term and combinations of the strain production term, the advection term, 
and the time derivative term rather than each scaling like them individually, then possible 
equilibrium similarity solutions include 

- - 

(2.11 a) 
(2.11 b) 
(2.1 IC) 

(2.1 Id) 

(2.1 le) 
- 
U i 2  0; h ( t ) 4 3  , (2.11f) 

where h(t)  = 1 + El(1 - e-2az2t) and El,  E2, and E3 are dimensionless parameters. To 
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avoid singularities, when a22 > 0 the value of El should be at least -1.0; when a22 < 0 
the value of E1 should be zero or negative and physical arguments suggest E2 = 3. The 
results of Rogers (2002) indicate that it is this equilibrium similarity solution that is 
observed for most strain geometries and confirm that E2 = fr when a22 < 0. 

Given that at least the long-time behaviour of the above similarity solutions is expo- 
nential, it is convenient to define the dimensionless exponential growth rates 

(2.12) 1 dUm nu = -- 1 db 
b d ( a t )  Urn d ( a t )  ’ n b =  -- 1 d R e ,  

nRe = -- 
R e m  d ( a t )  

where the strain-rate magnitude a is given by a = lull1 = 10221. For all the above 
similarity solutions nRe = f 2 ,  whereas values for n b  and nu differ. For the classical self- 
similar solution and the equilibrium similarity solution (2.10) n b  = f l  and nu = f l ,  
where the plus signs apply when a22 > 0 (“C”-type straining, as defined later) and the 
minus signs when a22  < 0 (“D”-type straining). For the similarity solution (2.11) n b  = 1 
and nu = 1 when a22 > 0 and n b  = 2E2 - 1 and nu = -2E2 - 1 when a 2 2  < 0 (the value 
E2 = 4 yielding n b  = 0 and nu = -2). 

3. Generating the simulations 
3.1. The numerical method 

In the absence of an applied strain, both the streamwise and spanwise directions of a 
temporally evolving wake are homogeneous, with the wake spreading in the inhomoge- 
neous cross-stream direction as time evolves. However, application of a global mean strain 
generates additional terms in the governing equations that exhibit a direct dependence 
on the spatial coordinates 2, and therefore prevent homogeneity. As shown by Rogallo 
(1977, 1981), this explicit dependence can be removed by transforming to a moving co- 
ordinate system that follows the mean velocity field associated with the applied strain. 
In this moving reference frame the problem again becomes homogeneous in the mapped 
streamwise and spanwise directions and Fourier expansions can be used to represent the 
spatial variation of the dependent variables in these directions. 

In this moving coordinate system the numerical method used to simulate unstrained 
wakes in Moser et al. (1998) becomes computationally unfeasible. Instead, the cross- 
stream dependence of the flow variables is handled by the method developed by Corral 
& Jimenez (1995). For this method, the computational domain is chosen to be large 
enough so that the vorticity is coniined to a region away from the cross-stream boundaries. 
Periodicity is assumed in the cross-stream direction for the purposes of time-advancing 
the vorticity field, but the effect of the undesired periodic image flows is removed by 
using an appropriately corrected velocity field when computing the nonlinear terms. The 
mathematical details of combining the transformation developed by Rogallo (1977, 1981) 
with the method of Corral & Jimenez (1995) to simulate strained inhomogeneous free 
shear flows are outlined in an appendix of Fbgers (2002),  available from the JFM Editorial 
Office at Cambridge. 

The number of Fourier modes required to adequately resolve the turbulence in each 
simulation is variable, depending on the orientation and duration of the strain. Because 
the computational domain is deforming with the mean strain, it eventually becomes 
necessary to add computational modes in directions of stretching and it may be possible 
to  remove modes in directions of compression or as the flow structures increase in scale. 
Such “remeshing” is done several times during each simulation to ensure efficient use 
of the computational resources (between 4 and 14 times for each of the six cases). The 
number of Fourier modes at the start and finish of each calculation is given in table 1. To 
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240 128 32 700 64 3.16 10.17 1.90 6.7 
240 128 1536 128 64 3.16 11.64 2.30 10.0 
600 96 1920 128 80 8.32 23.82 4.20 66.7 
144 80 384 400 64 8.32 14.96 1.80 6.0 
320 96 128 512 96 13.49 18.65 1.40 4.1 
400 64 1920 128 64 13.49 31.20 4.80 121.5 

107 
72 
163 
37 
50 
81 

Case C 
Case D 

CaseCD 
Case DC 

CaseCDC 
CaseDCD 

s in initial mesh (N’ ) ,  after final remesh (Pif), initial ( ~ i )  and final 
( ~ f )  times of the time interval over which the strain is applied, total strain achieved by each case 
(At = t f  - t i ) ,  and Cray C90 CPU hour requirement for each simulation. The strain geometry 
for cases ending in “C” is compressive in 2 1  and expansive in 2 2 ;  this is reversed for cases ending 
in “D”. The strain rate magnitude for all cases is abo/Uz = 0.271. 

512 
512 
96 
768 
256 
512 

fully dealias the results, the “physical space” grids used to compute nonlinear products 
contain 3/2 as many grid points as the number of Fourier modes listed for each of the 
coordinate directions. The number of Cray C90 CPU hours required for each of the 
different cases is also given in table 1. 

3.2. Cases samulated 
The strained wake cases simulated here all result from the application of spatially uniform 
and temporally piecewise constant strains in the 2 1 - 2 2  plane. The initial unstrained wake 
flow field to which strain is first applied is the same as the one used in Rogers (2002). 
The reasoning for selecting this particular initial field is given there. Basically, the field 
with the largest statistical sample of eddies (or, equivalently, the smallest wake width for 
a given computational domain size) that is still in the self-similar evolution period of the 
unstrained wake calculation was chosen (see Moser et al. 1998). 

At time t l ,  the first constant strain is applied. The two cases examined here are cases C 
and D of Rogers (2002), and are referred to here by the same name. As noted above, for 
these flows the applied strain is in the 2 1 - 2 2  plane, with no component in the spanwise 
direction. The strain in case C is compressive in the streamwise direction and expansive 
in the cross-stream direction, corresponding to the strain felt by a spatially developing 
wake entering a region of adverse pressure gradient (for this reason “C”-type straining 
will also be referred to as “adverse” straining). The streamwise computationai domain 
size L, thus decreases with time (or increasing total strain) and eventually artificially 
constrains the flow evolution compared to the infinite-domain problem being modeled. 
This computational limitation is further compounded by the rapidly increasing wake 
width associated with the expansive cross-stream strain. By a ( t  - t l )  M 1.0, or a to- 
tal strain of 2.7, the width of vortical fluid is comparable to L, and beyond this time 
large-scale eddies (of scale L,) will be impacted by the periodic boundary conditions 
of the simulations. However, examination of the vortical structures prior to this point 
in the evolution suggests that such large-scale motions do not form for this orientation 
of the applied strain. Apparently the wake is pulled out too rapidly in the cross-stream 
direction for coherent, slow, large-scale structures of this scale to form. Because of this, 
the simulations are probably not strongly impacted by the limited streamwise domain 
until later and the run was not discontinued until a(t - t l )  = 1.9. 

In case D the strain has the opposite sign (but same magnitude and orientation), with 



Successively strained wakes 9 

expansive strain in the streamwise direction and compressive strain in the cross-stream 
direction. This is analogous to the straining caused by a favourable pressure gradient 
and “D”-type straining is also referred to here as “favourable” straining. In this case, 
the streamwise computational domain extent L, increases and the statistical sample of 
eddies thus also increases throughout the run (although not as rapidly as the box size 
since the eddies become elongated in the streamwise direction). Despite the compressive 
strain in 2 2 ,  the wake width does not become negligible and this computation could be 
continued indefinitely. However, because of increasing computational cost associated with 
the growing domain size, the simulation was terminated at a ( t  - t l )  = 2.3. 

The evolutions of cases C and D have been documented in Rogers (2002). The new 
simulations considered in this paper consist of four new cases in which the strain is 
suddenly changed to  a new value at a time t 2  (cases CD and DC) or t 3  (cases CDC 
and DCD). Given the limitations on case C described above, t 2  was chosen such that 
a ( t 2  - t l )  = 1.4, corresponding to  a total strain of about 4. In order to  look for effects 
of the strain history, it is desirable to have this total strain be large, but if it were any 
larger than this it would be hard to separate differences resulting from the strain history 
from those associated with the finite computational domain. 

The initial condition for case CD is the flow of case C at t 2 .  At this time the “adverse” 
straining is switched to “favourable” straining of the same magnitude and the compu- 
tation is continued. Note that case C is also continued further until a ( t  - t 2 )  = 0.5, as 
noted above. Similarly, the initial condition for case DC is the flow of case D at t 2 ,  at 
which time the “favourable” straining of case D is switched to “adverse” straining of the 
same magnitude. Case D is further continued until a ( t  - t 2 )  = 0.9. 

At time t 3 ,  chosen such that t 3  - t 2  = t 2  - tl = At, the total strain experienced by 
both cases CD and DC is one. The computational domain in fixed laboratory coordinates 
is the same size as that of the unstrained wake simulation used as an initial condition at 
time tl .  It is instructive to compare cases CD and DC at this time. If the wake turbulence 
is affected primarily by the total strain, then these two flows should be similar at t 3 .  If 
strain history has a significant impact on the evolution then there should be notable 
differences. 

At time t 3 ,  the reversal of the sign of the strain is repeated. The “favourable” strain 
of case CD is switched to “adverse” for case CDC and the “adverse” strain of case DC is 
switched to “favourable” for case DCD. Again, the magnitude of the strain rate a remains 
unchanged. Case CD is continued until a(t  - t 3 )  = 2.8 and case DC is continued until 
a ( t  - t 3 )  = 0.4. For the reasons discussed above, computational domain size limitations 
necessitate termination of case DC relatively quickly, whereas case CD could be run 
indefinitely. The new cases CDC and DCD are run until a ( t - t 3 )  = 1.4 and a ( t - t 3 )  = 4.8, 
respectively. Case CDC is thus terminated at t 4  = t3  + At, whereas case DCD is run 
until a ( t  - t 4 )  = 3.4. 

Comparison of case CDC with case C and of case DCD with case D is also instructive. 
All four of these simulations begin from a total strain of one, but the initial turbulence 
is different between the previously unstrained and the successively strained flows. For 
cases C and D the initial turbulence is that associated with a self-similar unstrained 
wake, whereas for cases CDC and DCD the initial turbulence has undergone fairly rapid 
squeezing and stretching (resulting in thicker wakes with smaller mean velocity deficits). 

The strain rate for all the computations is chosen to be the same as that used in the 
previous strained wake simulations of Rogers (2002), namely abo/Uz = 0.271, where a 
corresponds to the magnitude of the strain rate in both of the two strained coordinate 
directions, and bo and U$ are the wake width and velocity deficit, respectively, at the 
time tl when the first strain is initially applied. This choice of a is roughly equal to the 

’ 
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72 73 7;4 

0 10 20 31 

“C” strain, FIGURE 1. Evolution of the wake Reynolds number Re, = U,b/v. - 
7 

_--- “D” strain, -.- no strain. 

initial inverse turbulence time scale c / q 2 ,  with the initial value of the dimensionless ratio 
aq2/e  being 1.06 at the centreline when t = tl. The quantities bo and U g  are also used to 
define a dimensionless time r = tUg/bo .  The dimensionless times T at which each case 
is begun and terminated, along with the total strain achieved during that time interval 
are listed in table 1. 

4. Results from the simulations 
In this section both turbulence statistics and contour plots of the spanwise vorticity 

component are examined to study the impact of successively applied strains on the wake. 
The generality of the behaviour observed in Rogers (2002) and the sensitivity of various 
statistics to  changes in the initial conditions are assessed. 

4.1. The wake mean velocity deficit 
As noted in section 2.2, the wake Reynolds number Re, based on b and U, should grow 
exponentially if the shape of the mean wake velocity profile is universal. The evolution of 
the Reynolds number Re,,, is shown in figure 1 on a log-linear scale to facilitate the deter- 
mination of exponential behaviour. The time coordinate has been non-dimensionalized as 
T = t U g / b o ,  as noted previously (note 71 = t lU$/bo = 3.16). The Reynolds number of 
the unstrained wake (chain-dotted line) rapidly approaches a constant value, as expected 
for a self-similar wake, of about 2000. The strain is applied at the beginning of what is 
deemed to be the “self-similar period” of this unstrained simulation, within the period 
of nearly constant Reynolds number. The three flows with “C”-type strain (a22 > 0) are 
shown by solid lines and those with “D”-type strain (a22 < 0) are shown by dashed lines. 
All the curves for the strained cases are linear on this log-linear plot, confirming that 
all the cases exhibit exponential growth. This exponential growth begins immediately 
upon application of the strain, without any transitional period. Also, as predicted by the 
self-similar analysis for strained wakes, the growth rate for the “C”- and “D”-type cases 
is nRe = 2 and nRe = -2, respectively. 

The agreement between the analytical self-similar solution and the results presented 
in figure 1 suggests that the mean velocity profile shape is universal, as assumed in 
equation (2.9d). This is confirmed in figure 2, in which the scaled mean velocity profiles 
are shown for each flow at various times. The mean velocity profile shapes are similar, 
both over time as each flow develops and between the different cases. These shapes are 
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FIGURE 2. Scaled wake mean velocity profiles at several roughly equally spaced times during 
each simulation for ( u )  case C, ( b )  case D, (c) case DC, ( d )  case CD, (e)  case CDC, and (f) 
case DCD. The ---- curve indicates a gaussian. 

close io gaussian, but with slightly IiiOre rapid decay at the edges of the wake, as is also 
observed for unstrained wakes. Exceptions at late times in cases CD and DCD are a 
result of noise; the peak level of the velocity deficit, U,, has dropped by three orders 
of magnitude for these cases (since the strain was first applied at 7-1) and the wake is 
essentially gone. Note that Re, is not sensitive to these late time oscillations in the mean 
velocity profile. 

The shape of the mean velocity profile remains unchanged when each strain is first 
applied, throughout the straining, and when a different strain is imposed. Because of this, 
there is no transitional period required to achieve the self-similar growth rate nRe = k2. 
Thus the strain history is not important for determining the further evolution of Re,. 
The order in which the different strains axe applied is seen to  be irrelevant in figure 1, 
with Re, being uniquely determined by the total strain at any given time 7. For both 
cases CD and DC, reversing the sign of the strain at 7-2 = 8.32 for another aAt of 1.4 to 
7-3 = 13.49 leads to the same value of Re, as observed at TI. Also, the Re, evolutions 
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FIGURE 3. Evolution of the wake width b, normalized by bo, its value at 7 1 .  - “C” strain, 
“D” strain, -.- no strain. ---- 

for the continuation of these two simulations beyond this time are identical to  those of 
cases CDC and DCD. 

The time evolution of the wake width b is shown in figure 3, again plotted in log- 
linear coordinates and again with the unstrained wake results included for comparison. 
After a transitional period, the widths in the “C”-type cases grow exponentially with 
n b  = 1. The transition time required to achieve this state of exponential growth is about 
the same for all three cases. The widths in the “D’l-type cases initially decay and then 
approach a constant. In cases CD and DCD there is a fairly extended period (uAt x 1) of 
exponential decay with n b  = -1 (the decay rate predicted by classical similarity theory) 
before n b  approaches zero. The widths in these two cases do not exhibit an extended 
period with n b  = 0, although at these late times the wake is essentially gone, with the 
deficit being less than 1% of its initial amplitude at 71. The asymptotic state does appear 
to be characterized by n b  = 0, but the transition time required to achieve this and the 
period of n b  = -1 behaviour are different from the behaviour observed in case D. 

Because the resfinse in case D is somewhat different from that observed in cases CD 
and DCD, the ultimate state of wakes undergoing “D”-type straining may be sensitive 
to the initial conditions and the strain history, rather than just to the total strain. 
For instance, the wake width at 73 for case DC is greater than that at the same time 
for case CD, despite the total strain being one in both cases. In fact, the width at 7-3 
for case DC is 93% of that of case C at 72, even though the latter flow has not been 
compressed in the cross-stream direction at any time during its evolution. Extrapolating 
the unstrained wake evolution (chain-dotted curve) in figure 3 suggests a wake width 
somewhere between those of cases CD and DC at 73. Thus the order in which the wake 
is “adversely” or “favourably” strained has a significant impact on the wake width; in 
this case resulting in wake widths that are about a factor of three different at 73. 

Similar conclusions hold for the peak wake velocity deficit Urn, shown in figure 4. After 
a brief transitional period, the deficits in the ((C”-type cases grow exponentially with 
nu = 1, whereas those in the “D”-type cases ultimately decay at a rate approaching 
nu = -2, with cases CD and DCD again exhibiting a longer transient period (with 
nu w -1). As with the wake width, this results in values of the wake deficit that are 
dependent on the strain history, and not just on the total strain (again about a factor of 
three difference between cases CD and DC at 73). 

The wake shear rate, characterized by the ratio Um/b, is plotted in figure 5, non- 
dimensionalized by the constant strain rate a. The shear rates for all three “C”-type 
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FIGURE 5. Ratio of wake shear rate to applied strain rate Urn/(ab). - “C” strain, 
“D” strain, -.- no strain. ---- 

cases ultimately approach a constant. In these three flows the wake shear rate comes 
into balance with the constant applied strain rate, as predicted by all of the similarity 
solutions presented in section 2.2. The cases with “D”-type strain all exhibit rapidly 
decaying wake shear rates, indicating that the wakes in these flows are strongly suppressed 
by the zpplied strain. The wake component of these flows becomes insignificant and the 
evolutions are essentially those of a strained slab of turbulence. The strain-rate history 
is important in determining the level of the shear-strain ratio. At 73 (total strain of one), 
U,/(ab) = 0.203 for case DC, only 12% that of case CD (1.735) at the same time and 
total strain. A fixed amount of total “favourable” strain is thus apparently more efficient 
at suppressing a wake if applied prior to any “adverse” straining. As can be seen in 
figure 5, the decay in the shear rate is delayed for cases CD and DCD (compared to that 
of case D) after the application of “favourable” strain at 72 and 7 3 ,  respectively. 

4.2. The turbulence levels 
According to the classical self-similar solution of section 2.2, the turbulent kinetic energy 
should scale with the square of the wake mean velocity deficit. The evolution of the 
maximum value of q2 in x2 (denoted by qk) scaled in this way is shown in figure 6a. As 
expected, the ratio is roughly constant for the developed unstrained wake (chain-dotted 
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FIGURE 6. Turbulence kinetic energy evolution at point of maximum q2, ( a )  scaled by the wake 
deficit Urn and ( b )  normalized by the value of the wake deficit at TI, U k .  - “C” strain, 

“D” strain, -.- no strain. ---- 

curve). On the other hand, the ratio is not constant for any of the strained flows. As 
noted in Rogers (2002), the turbulence levels cannot keep pace with the rapidly changing 
mean wake velocity deficit. For the “C”-type cases, in which the deficit increases, the 
ratio q k / U A  decays, while for the “D”-type cases, in which the deficit decays, the ratio 
increases. 

The evolution of the unscaled value of qk (non-dimensionalized by ( U k ) 2 ,  the square 
of the velocity deficit at 71) is shown in figure 6b. Consistent with the above discussion, 
the variation in qk/(U%)2 is much less than that of U;, with the data from all cases 
lying between 0.01 and 0.5, instead of spanning more than four orders of magnitude. For 
the “C”-type cases, the peak turbulent kinetic energy levels ultimately increase (faster 
than exponentially over the periods computed), whereas for the “D”-type cases these 
levels initially decrease, perhaps becoming roughly constant at late times (or even slowly 
increasing for case DCD). Even for cases C and CDC, the kinetic energy levels increase by 
only a factor of three throughout the entire simulation (although these increased energy 
levels are maintained across wakes of rapidly increasing width). 

It is remarkable that although the levels of qk/(V;)2 for cases CD and DC are nearly 
an order of magnitude different at 73, the corresponding values of q$/UA are virtually 
identical. After 73, the evolution of q&/U: for case DC closely matches that of case CDC. 
The agreement for cases CD and DCD is less impressive but still notable, especially 
considering that the wake has been largely suppressed for these cases. For these strained 
wakes the level of q&/UA is thus reasonably well predicted by the value of the total 
strain. The evolution of the turbulence kinetic energy level can thus be calculated if the 
evolution of the mean velocity deficit can be determined. 

The evolution of the maximum (in 2 2 )  turbulent kinetic energy dissipation rate, E,, is 
qualitatively similar to that of the turbulent kinetic energy qk. In cases D and CD, E ,  

decays rapidly; in case DCD initial decay is followed by a slow increase. The dissipation 
rate ern ultimately increases for the “C”-type cases, although this follows a significant 
period of decay, particularly for case DC. Scaling ern by UA/b greatly reduces the disparity 
between the different cases with the same total strain, but Ernb/U; is not as convincingly 
dependent on only the total strain as q&/UA; there is some dependence on the strain 
history. 

The rough similarity in the growth behaviour of the kinetic energy and its dissipation 
rate results in a time scale q 2 / E  that changes relatively slowly compared to the other 
turbulence statistics examined here. The value of the time scale at the point of maximum 
(in 22) turbulent kinetic energy, & / E q ,  is shown in figure 7 ( a ) ,  scaled by the constant 
strain-rate magnitude a. Note that this figure is plotted on a linear scale, and that the 
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values of aq%/e, vary by less than an order of magnitude for the strained wake flows. 
In Rogers (2002) it was observed that this time scale increased for all orientations of 
applied strain, and that the rate of this increase was insensitive to the orientation of 
the strain. &om figure 7( a )  it can be seen that while aq$/e, does generally increase, its 
value is dependent on the strain history. The growth in case CDC is delayed relative to 
that of case DC beyond 7-3 and the late-time behaviours of cases CD and DCD are also 
quite different. In most of the flows, the’time scale remains fairly constant for uAt M 1 
after one type of strain is replaced by another and this tends to spread out the curves in 
figure 7( a) .  

In many shear flows, the turbulence time scale comes into balance with the wake shear 
rate after the flow develops (e.g. the unstrained wake flow discussed here). The presence 
of strain in the flows examined here prevents this. The product of the wake shear rate 
Um/b and the turbulence time scale & / e q  is shown in figure 7 ( b ) .  The suppression of 
the wake with “D”-type straining leads to exponential decay of this product, although 
initiation of this decay is delayed for cases CD and DCD, which have been previously 
strained. Although the wake shear becomes constant with “@’-type straining, the turbu- 
lence time scale continually increases (see figure 7(a)) ,  resulting in the sustained growth 
of (Um/b)(q%/eq).  This growth occurs at a similar rate for all three “C”-type flows. 

Ultimately, the turbulence Reynolds number q 4 / ( w )  grows for all six strained flows. 
The “C”-type strain results in fairly rapid growth (although after a period of decay 
in case DC), whereas “D”-type strain yields modest growth after an initial period of 
decay, the end result being Reynolds numbers that do not vary by more than a factor 
of about two throughout the evolution of each simulation. Thus, even though the wake 
is suppressed in the “D”-type cases, the production associated with the applied strain 
prevents the flow from relaminarizing. 

4.3. The Reynolds stresses 
According to the classical - self-similar solution presented in section 2.2, the individual 
Reynolds stresses uiu; will all grow or decay in proportion to the turbulent kinetic 
energy examined above, resulting in constant Reynolds stress anisotropy. However, the 
turbulence in these strained wake flows is not evolving in accordance with the similarity 
solution (2.9). Even for the modest strain rates examined here, the turbulence production 
by the applied strain has a significant effect and no constant anisotropy state is achieved. 
Indeed, in some of the flows one of the Reynolds stress components may be decreasing 
- while another is increasing. It is thus necessary to examine the full Reynolds stress tensor 
Z G ~ Z G ~ ,  rather than just q 2 ,  to understand the evolution of the turbulence. 

The width of all the Reynolds stress profiles is well described by b( t ) ,  the width derived 
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from the mean wake velocity deficit profile. Thus scaling the cross-stream coordinate 22 
by b( t )  when plotting these profiles does a good job at collapsing the cross-stream extent 
of the various curves. On the other hand, scaling the Reynolds stresses by U z ( t )  does 
not collapse their cross-stream variation. In fact, as can be seen from figure 6, scaling 
by U i ( t )  causes greater disparity between the Reynolds stress profiles at various times 
than is observed in the unscaled profiles. 

In the case of “C”-type striining, the wake width increases (ultimately as e a 2 z t )  and the 
wake shear rate approaches a constant (see figure 5). Because of the continued presence 
of wake shear, there continues to be production in the ui2 Reynolds stress component 
( P ~ L  0) and because this production is largest at the locations of maximum shear, 
the ui2 profie tends to become at least slightly “double-peaked”. The Reynolds stress 
component associated with the other homogeneous direction, ui2 behaves similarly, al- 
though the growth is less pronounced. The behaviour of the cross-stream component uk2 
is more variable, with increasing levels in case C, roughly constant levels in case CDC, 
and decreasing levels in case DC. The reduced levels - of uk2 in the latter two cases result 
in decreasing levels of the Reynolds shear stress uiuk, in contrast to case C, in which all 
the Reynolds stresses increase at roughly similar rates. 

In contrast to the increasing wake widths of the “C”-type cases, the widths in the 
“D”-type cases are decreasing (or approaching a constant at late times). However, the 
turbulence is advected inward by the mean strain such that the width of the turbulent 
region is still well described by the width of the mean velocity profile, as noted above. In 
these “D”-type flows, the wake is suppressed, the wake shear is not maintained (figure 5), 
and the Reynolds shear stress is driven to zero. The production of turbulence ultimately 
results solely from the applied mean strain. The Reynolds stress profiles thus become 
single-peaked and the strongest growth, if any, is observed in the uk2 component as a 
result of Pi2 being greater than zero. For this strain geometry, Pfl is negative and this 
negative “production” results in the decay of ui2 to low levels in all of the “D”-type 
cases. 

The differing growth and decay rates of the various Reynolds stress components re- 
sult in significant anisotropy of the Reynolds stress tensor in these strained wake flows. 
Switching the sign of the strain can reverse the growth or decay and leads to differing 
relative strengths of the various Reynolds stress components. This relative importance is 
easily visualized by examining plots of the Reynolds stress anisotropy tensor bij ,  where 

- 

- 
- 

- 

- 

- 

Sij being the Kronecker delta. Scaled in this way, the values of bij range between -1/3 
and 2/3 for the normal (i = j )  components and between -1/2 - and 1/2 for the shear 
(i # j )  components. The profile of the Reynolds shear stress uiu; (and therefore also 
b l 2 )  is statistically anti-symmetric and its value at - the centreline is near zero. Because 
of this, the anisotropies at the point of maximum uiui are examined, rather than the 
centreline values. 

The time evolution of the Reynolds stress anisotropy for all six simulations is depicted 
in figure 8. For case C (figure 8(a)) ,  the relative magnitudes of the various terms are 
similar to those of the unstrained wake (the initial values at 71). Production by the 
applied strain tends increase the relative importance of bll (Pfl > 0) and decrease that 
of b22 (P12 < 0). Reversing the sign of the strain in case D leads to a re-ordering of the 
relative strengths of the stress components, with the strain production driving b l l  to low 
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levels, while increasing b22 to values much larger than those of the other components. 
As with case C, b33 remains relatively unchanged, but the decay of the wake component 
drives b12 to zero. 

If the sign of the strain is reversed, and “C”-type strain is applied following the “D”- 
type strain (figures 8( c )  and ( e ) ) ,  then the ordering once again returns to bll  > b33 > b22 .  

Although the levels of b l 2  decay, they are not driven to zero. When “D”-type strain is 
applied following V - t y p e  strain (figures 8(d)  and (f)), the shear stress b l 2  is driven 
to  zero as the wake disappears and the energy in the streamwise fluctuations becomes 
negligible (bl l  approaches -1/3). Because of production by the applied strain, b22 in- 
creases to about 1/3, while b33 remains close to zero. (Note that the late time 7- > 27 
behaviour in figure 8(f) should be ignored because the point of maximum ui.6 is no 
longer well-defined, having decayed to insignificant Ievels.) 

It is thus apparent that, even at these modest strain rates, the anisotropy evolution is 
strongly affected by the production associated with the applied strain. The dominance of 
large-scale production mechanisms may explain the success of Rapid Distortion Theory 
(RDT) in describing such strained wake flows (Townsend 1980). It should also be noted 

- 
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FIGURE 9. Contours of spanwise vorticity in the 2 3  = 0 plane at ( u )  71 (initial condition), ( b )  
d(t  - t l )  = 1.40 for case C, and ( c )  a(t  - t l )  = 1.40 for case D. Negative contours are dotted, 
positive contours are solid, and the contour increment is 3.0U:/b0 in (a), 2.0U:/b0 in ( b ) ,  and 
l.OU:/bo in ( c ) .  Tick marks are at bo intervals. Note that ( c )  is not at the same scale as the 
other frames. 

that the strong changes in component anisotropy levels brought about by the strain 
are inconsistent with the constant-anisotropy classical self-similar solution of section 2.2. 
Apparently the turbulence “production” by the strain prevents this solution from being 
realized, at least for the strain rates considered here. In case C the variation of the 
anisotropy components is less than in the other flows, but the effects of strain production 
are still apparent in figure 8(a). It is possible that, after a long enough time, a constant- 
anisotropy state might be achieved for the “D”-type straining. However, this state ( b l l  = 
-1/3, blz = b33 = 0, and b22 = 1/3) would be associated with a flow that no longer has 
a wake component. 

4.4. Flow visualization 
In this section contour plots of spanwise vorticity are used to visualize the structure of 
the strained wake flow fields. Instantaneous slices through the full computational do- 
main at 2 3  = 0 for each of the six strained wake simulations examined here are shown 
in fixed laboratory coordinates (not the moving computational coordinate system). The 
unstrained wake field used for the initial condition of the strained wake computations 
is shown in figure 9(a).  Fields resulting from straining with “adverse” and “favourable” 
strain are shown in figures 9( b )  and (c), respectively. The images of these strained flows 
are similar to those shown in Rogers (2002), although the total strain here is larger 
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(a( t  - t l )  = 1.4, corresponding to a total strain of just over 4, rather than a(t - t i )  = 1.2, 
or a total strain of 3.3). Frames ( b )  and (c) thus represent the initial conditions for 
the successively strained cases CD and DC, respectively. As discussed in Rogers (2002), 
“type-C” straining ultimately results in a thick wake with an exponentially increasing 
width, which follows the distortion associated with the mean strain. The streamwise 
domain size becomes limited and at late times the simulation may no longer provide 
an adequate approximation to the infinite-domain problem. However, there is not much 
large-scale organization present during the flow’s evolution and this domain size limita- 
tion may not be as severe as suggested by the ratio of the flow width to the streamwise 
domain extent. Many small-scale motions contribute to an eddy viscosity type of mixing 
and the associated passive scalars contours are roughly horizontal, without large incur- 
sions of relatively unmixed fluid from opposite sides of the wake. For case D, the strain 
results in an ever-increasing streamwise domain extent and a corresponding increase in 
the statistical sample of eddies. Despite the compressive straining in the cross-stream 
(22) direction, the wake width does not continually diminish, but reaches a roughly con- 
stant thickness. The wake itself maintains some large-scale organization, with small-scale 
vortical motions “clumping” into larger organized motions and unmixed free-stream fluid 
from both sides of the wake penetrating across the wake centreline. 

The response of the turbulence to successive straining is depicted by the spanwise 
vorticity contours shown in figures 10 and 11. Starting from the field in figure 9(b),  
case CD is “favourably” strained until the original streamwise domain extent is recovered, 
corresponding to an overall applied total strain of one (figure 10(b)). At this point, the 
flow is once again strained L‘adversely” (case CDC) until a time 74 at which a(t-t3) = 1.4 
once again (figure 10(d)). The turbulence is dominated by small-scale motions with 
little large-scale coherence, and the vortical eddies seem to passively follow the mean 
distortion brought about by the applied strain. Under the action of the “favourable” 
strain the vortical eddies become elongated in the streamwise direction. In response to  
the ‘Ladverse” strain the eddies become more vertically oriented. 

Again, the lack of large-scale coherence results in an eddy-viscosity type of mixing, 
with relatively horizontal passive scalar isosurfaces. Fluid from one side of the wake 
does not penetrate far across the wake without becoming mixed. Once the “adverse” 
straining is begun the passive scalar contours appear to “buckle” and collapse on each 
other, temporarily permitting deeper incursions of fluid across the wake (at the time of 
figure lO(c)) before finally ending up in a pattern at 74 (figure 10(d)) that is similar 
to that of case C at 72 (figure 9(b)).  This “buckling” behaviour is more pronounced in 
case DC described below. 

The total strain of case CD at 73 corresponds to that of the initial flow field at 71. Con- 
tour plots of the spanwise vorticity for these two fields are similar (compare figure 10( b )  
with figure 9(a)), although the wake width of case CD at 73 is slightly larger, as also 
noted from figure 3. Similarly, the total strain of case CDC at 74 is the same as that of 
the case C at 72. Again, both the vorticity and passive scalar fields are similar (compare 
figure 10(d) with figure 9(b)) and the flow width a t  the later time is slightly greater. 
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FIGURE 10. Contours of spanwise vorticity in the 23 = 0 plane at ( a )  a(t-tz) = 0.75 for case CD, 
( b )  a(t - t z )  = 1.40 for case CD, ( c )  a(t  - t 3 )  = 0.78 for case CDC, and ( d )  a(t - t 3 )  = 1.40 for 
case CDC. Negative contours are dotted, positive contours are solid, and the contour increment 
is 2.0U:/b0. Tick marks are at bo intervals. 
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The evolution of the spanwise vorticity in cases DC and DCD is shown in figure 11. 
The initial state for this pair of runs is shown in figure 9(c). “Adverse” straining com- 
presses the flow in the streamwise direction and the row of “clumped” vortices appears to 
“buckle” into a series of vertically oriented eddies. Contours of the passive scalar quan- 
tity (not shown) wind sinuously up and down across the wake, with significant pockets 
of unmixed fluid from one side of the wake penetrating well across the centreline. After 
the “adverse” strain has been applied for a(t - t 2 )  = 1.40, the total strain again reaches 
one (figure l l ( b ) ) ,  with the streamwise domain extent being equal to its size in the ini- 
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FIGURE 12. Evolution of the ratio between the maximum (in z 2 )  of the turbulent kinetic 
energy and its centreline value. - “C” strain, ---- “D” strain, -.- no strain. 

tial unstrained wake (figure 9(u)) .  The turbulence at this point, however, is markedly 
different from that of the unstrained wake at 71. The wake width is 4.3 times that at TI 

and the vortical motions are vertically oriented, with deep incursions of unmixed ffuid 
across the wake as noted above. Additionally, the vorticity has decreased in magnitude, 
with the contour levels in figure l l (b)  being only a sixth of those used in figure 9(a) .  
At 73, “favourable” straining is once again applied and the eddies again become elon- 
gated in the streamwise direction, with little unmixed fluid penetrating across the wake 
centreline. At 74, the total strain for case DCD (figure l l (d) )  is the same as that for 
case D at 72 (figure 9(c)). The structure of these two “favourably” strained flowfields 
is also similar, despite the differences in their prior history. The eddies are elongated in 
the streamwise direction and there is some large-scale “clumping”. At 74, the wake is 
60% wider than at 72, but this is a relatively small difference given that the wake grew 
in width by a factor of five and a half by 73 (see figure 3). Careful examination of the 
contour plots does reveal some differences, however. The larger, slower (see figure 7( u ) )  
large-scale eddies in case DCD tend to be more smeared out in the streamwise direction, 
whereas the smaller, faster eddies in case D are not as passively advected by the strain, 
maintaining less elongated shapes more typical of those found in unstrained wakes. 

As is readily seen from the above flow visualizations, the primary effect of the applied 
strain is a “box distortion” of the vortical eddies. They become elongated in directions 
of expansive strain and compact in directions of compressive strain. Thus, for the strain 
rates considered here, the turbulence reacts fairly skwly to the applied strain and is, to 
first-order, passively advected by it. As the simulations proceed to later and later times 
this effect becomes even more pronounced because the turbulence time scale increases, as 
noted above. Even for the modest strain rates considered here, the turbulence is unable to  
stay in equilibrium with the rapidly changing mean flow. This is also true for orientations 
of applied strain other than those considered here (Rogers 2002). 

In Rogers (2002) it was noted that in case C the strain resulted in a q2-profle that 
was double-peaked, with turbulent kinetic energy levels at the centreline, q:, decreasing 
despite growth of the peak turbulent kinetic energy level q:. This leads to a relatively 
less active zone near the wake centreline for this case (as can be seen in figure 9(b)). 
The ratio q$/q,?, a good indicator of this effect, is shown in figure 12 for all six strained 
flows examined here as well as for the unstrained wake. While this ratio is fairly constant 
for the unstrained wake (as expected for self-similar q2 profiles), it increases for all cases 
subjected to  “C”-type strain. In contrast, the ratio qz/qz for cases with “D”-type strain 

, 
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FIGURE 13. Shifted and scaled wake ( u )  width and ( b )  peak velocity deficit evolution. 
“C” strain, ---- “D” strain. 

is rapidly driven to one, indicating that the peak of the profile moves to the centreline 
in these cases. However, even if the peak has moved to the centreline, application of 
“C”-type strain can still recreate a double-peaked profile (as in case DC, in which the 
value of qk/qz is back up to 1.19 by the end of the simulation). 

I 

5.  Conclusions 
Plane wakes subjected to the successive application of two types of plane strain have 

been simulated using direct numerical simulation. One type of plane strain consists of 
compressive strain in the streamwise direction and expansive strain in the cross-stream 
direction, corresponding to a spatially evolving wake experiencing an adverse pressure 
gradient; the other type is opposite in sign, analogous to a spatially evolving wake expe- 
riencing a favourable pressure gradient. The magnitude of the strain rate a is the same 
for both types. 

Simulations are begun from five different initial conditions. Two are begun from the 
unstrained plane wake at time tl .  Two are begun from cases that have experienced a total 
strain eaAt of about 4 (or a) at time t 2  and two are begun from cases that have returned 
to  a total strain of one at time t3 .  Comparing the responses of these different flows to the 
two types of strain considered here will thus address the sensitivity of the evolution to 
different turbulent initial conditions as well as the importance of the strain-rate history 
in determining the flow evolution. 

The characteristic shape of the mean wake velocity profile (f(q) in equation (2.9)) was 
found to be nearly universal, both throughout the evolution of each individual flow and 
between flows. As a result of this, the Reynoids number Re, = U,b/u, where Um is the 
peak wake velocity deficit and b is the wake half-width, changes exponentially as e2azzt. 
Additionally, because of this, Re,,, is determined entirely by the total strain experienced 
by the flow (as shown in figure 1); the strain-rate history is irrelevant. The value of Re, 
at t 3  is the same for both cases CD and DC because the total strain has returned to  one 
in both these flows at that time. The subsequent evolution of Re, in both these cases is 
identical to that of cases DCD and CDC, respectively, because the total strain histories 
are the same. The order in which the strains are applied does not matter because the 
effects on Re, are reversible. 

The strain history does have an impact on the evolutions of the wake width b ( t )  and 
the velocity deficit U,(t), however. The evolutions of these quantities for the various 
cases, shown in figures 3 and 4, have been replotted slightly differently in figures 13a 
and.13b to facilitate comparison of the responses to each type of applied strain. In these 
figures the time origins have been shifted by t,, the time at which the current strain was 
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first applied, so that each curve begins at t - ti = 0. Also, the initial amplitudes bi and 
. U k  at the time t, have been used to scale b and Urn, respectively, so that each curve 

begins at one. 
The response to “@’-type (adverse) straining shows little variation among the three 

cases simulated. Despite the different initial turbulence in these cases (unstrained wake 
turbulence, previously strained wake turbulence stretched in the streamwise direction to 
a total strain of four, and previously successively strained turbulence at a total strain 
of one), the growth of b and U,,, is similar in all three flows. After a transient period 
of aAt M 0.5, both of these quantities evolve exponentially with n b  = 1 and nu = 1. 
During this transient period, the values of n b  and nu are, respectively, somewhat larger 
and smaller than these asymptotic values. The good agreement between these three cases 
suggests that the wake width and deficit can be well-predicted during the application of 
adverse straining, with both these measures fairly quickly growing at the rate the flow is 
being stretched by the cross-stream expansive strain. 

The response to “D”-type (favourable) straining, on the other hand, is more sensitive to 
the strain history of the flow. Although the exponential growth rates evolve towards n b  = 
0 and nu = -2 in all three cases, the time required to achieve this asymptotic behaviour 
varies widely (note n b  + nu = -2 as a result of equation (2.5) and the universality of 
f (q)). In case D this wyrnptotic growth rate is achieved after aAt M 0.5 and b never 
decays more rapidly than n b  = -0.5. For the previously strained cases CD and DCD, 
the wake width does not become approximately constant until aAt M 4, with an initial 
period of about aAt M 1 during which the width decays rapidly with n b  = -1. Thus 
if the turbulence has been previously stretched in the cross-stream direction it can be 
quickly recompressed if the sign of the strain changes. If the turbulence is in equilibrium 
with the mean flow, as in the self-similar unstrained wake, then it exhibits a greater 
resistance to compression in the cross-stream direction. 

In all cases the ultimate values of n b  and nu are the same as those reported for 
cases C and D in Rogers (2002). The classical self-similar solution for strained wakes thus 
does not describe the ultimate flow evolution, whereas alternative equilibrium similarity 
solutions can. It is interesting to  note, however, that during the transitional period of 
the favourably strained cases CD and DCD when n b  = nu = -1, the evolutions are 
in agreement with the predictions of the classical similarity solution (they are also in 
agreement with the predictions of the equilibrium similarity solution (2.11) if E2 = 0). 
During this time, it appears that the turbulence is being passively squeezed after having 
been rapidly stretched. It is not until the turbulence is able to resist the cross-stream 
compression that the wake width predictions of the classical similarity solution become 
inaccurate. 

The varied response to the cross-stream compression associated with favourable strain- 
ing results in wake width and velocity deficit evolutions that are sensitive to the strain 
history. The order in which various strains are applied can change the end state and b 
and Urn are not completely determined by the total strain. As noted in the discussion 
of figures 3 and 4, the values of b and Urn at 73 (total strain of one) differ by a factor 
of about three. Because of the different responses to compressive cross-stream straining, 
the trajectories in these figures do not close on each other at 73 as they did for Re,,, and 
the effects of straining on b and Urn are, in general, not reversible. On the other hand, 
owing to the fairly extensive periods of n b  = nu = -1 behaviour in cases CD and DCD, 
the strain effects are nearly reversible in some cases. For instance, the values of b and Urn 
for case CD at 73 are only slightly different from their initial values at 71, the values for 
case DCD at 74 are only slightly different from those of case D at 72, and the values for 
case CDC at 74 are only slightly different from those of case C at 72. Additionally, these 
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FIGURE 14. Shifted and scaled peak turbulence ( a )  kinetic energy q& and ( b )  dissipation em, 

normalized by b and Urn. evolution. - “C” strain, ---- “D” strain. 

differences are in line with what would be expected for the spreading of an unstrained 
wake over the same time interval (increases of about 50% to 60% for b and decreases 
of about 35% for Urn). The biggest irreversibility results when favourable straining is 
applied to previously unstrained turbulence, followed by adverse straining. In this case 
the wake fairly quickly resists the initial cross-stream compression (note the different tra- 
jectories for case D in figures 13a and 13b) but not the ensuing cross-stream expansion 
associated with the subsequent adverse straining. The end result for case DC is a wake 
width at 73 that is over four times that at 71 and a velocity deficit that is reduced by 
over 75% between the same two times. 

The effect of straining on the turbulent kinetic energy is dependent on the strain 
history and is, in general, not reversible. As can be seen in figure 6b, the magnitude of 
qk is different by nearly an order of magnitude between cases CD and DC at 73. The 
value of qk at 73 is close to the initial value at 71 (reduced by less than 3%), but none of 
the other pairs of strains have a reversible effect on this quantity. The response to both 
“C” and “D”-type straining is not universal, with the application of “C”-type straining 
to case D at 72 actually resulting in an initially decreasing turbulent kinetic energy level, 
in contrast to the other two “C” cases, which exhibit increasing energy levels from the 
moment the strain is first applied. 

Surprisingly, scaling qk by U: greatly reduces the dependence on the strain history 
(figure sa). The values of q%/U: at 73 for cases CD and DC differ by only 15%. The 
qkl7.J; curves have been repIotted in figure 14(a), shifted so that each begins at the origin 
with an initial value of one. From this it is clear that the evolutions are not identical for 
each type of strain, although they are qualitatively similar. As with the velocity deficit 
Urn (figure 13b), the evolution for case D is different from the other two “D7’-type cases. 
However, the more rapid increase in qk /UA for case D is offset by the more rapid decrease 
for case DC, yielding a result at 73 that is very similar to that achieved by the slightly 
slower decrease for case C followed by the slightly slower increase for case CD. Despite 
the somewhat different trajectories in figure 14a, the value of &/U$ is reasonably well 
determined by the total strain experienced by the wake. The effects of strain on this 
statistic appear largely reversible. 

The magnitude of the dissipation rate of turbulent kinetic energy ern is also sensitive 
to the strain history. Like qk, the values E, at 73 differ by an order of magnitude, the 
value for case DC decays much more than that in the other “C”-type cases, and the value 
for case DCD ultimately increases, unlike in the other “D”-type cases. Again, however, 
scaling by b and U, results in evolutions that are more universal, although the evolution 
in case D is again different from that of the other “D7’-type cases (figure 14b). Because of 
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this, following case D with “C”-type straining in case DC yields a higher level of Emb/UA 
at 73 than following case C with “D”-type straining in case CD. 

Classical self-similar theory predicts that the ratios qk/U; and Emb/UA should be 
constant. This is not observed in the simulations. In all the “favourably” strained cases 
these ratios grow rapidly, whereas for the “adversely” strained cases they decay rapidly. 
The turbulence is unable to  keep pace with the exponentially varying mean flow quantities 
Urn and b. 

The turbulence time scale qk/Eq changes fairly slowly in comparison with the other 
turbulent statistics and its evolution is apparently not strongly coupled to the mean 
strain. Different applied strains can result in similar time scale growth, although this 
growth often ceases for a period of about uAt = 1 after the sign of the applied strain is 
changed. Variability in this delay leads to dependence on the strain history. The weak 
connection between the applied strain and the resulting time scale evolution provides 
further evidence that the turbulence is not strongly coupled to the rapidly changing 
mean flow. 

Flow visualization also indicates that to first order the turbulent eddies are largely ad- 
vected by the mean strain rather than rapidly evolving in response to it. When streamwise 
compression is applied following streamwise expansion the vortical flow “buckles”, result- 
ing in deep incursions of freestream fluid into the layer (figure 11). Reversing the sign of 
the strain again at this point leads to a more extended period of reduction in wake width 
(with n b  = -1) than results when such favourable straining is applied to a previously 
unstrained wake, as discussed above. It is not until coherent larger scale motions reform 
that the wake resists further compression ( n b  = 0). 

Although Townsend (1954) felt that his strained homogeneous turbulence attained a 
structural equilibrium with constant Reynolds stress anisotropies for total strains some- 
what greater than two, later experiments by Tucker & Reynolds (1968) and Marechal 
(1972) demonstrated that these anisotropies continue to increase with further increases 
in total strain. For the total strains examined here (see Table 1) there is no evidence 
of structural equilibrium in these strained shear flows. Reversing the sign of the applied 
strain results in rapid changes in anisotropy and the relative importance of the different 
Reynolds stress components. In their experiments on successively strained homogeneous 
turbulence, Gence & Mathieu (1979) found that the observed anisotropy returned to its 
original minimal level when the total strain returned to one. This reversibility and de- 
pendence on only the total strain were consistent with RDT predictions. The evolution 
of the anisotropy in the strained wakes examined here is more complex, being a function 
of the strain history as well as the total strain. For instance, the anisotropies bl l  and 
b22 of cases CD and DC at 73 are not even of the same sign, despite the total strain 
being one in both cases. The production of Reynolds stress by the mean wake shear thus 
complicates the anisotropy evolution compared to that in unsheared turbulence. 

The computer time required to generate these numerical simulations was provided by 
the NAS facility at the NASA Ames Research Center. 
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